پهنه بندی تغییرات رطوبت خاک در شوری‌های متفاوت آب آبیاری تحت منبع خطی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه مهندسی آب دانشکده علوم کشاورزی دانشگاه گیلان

2 دانشیار گروه مهندسی آب دانشکده علوم کشاورزی دانشگاه گیلان و گروه پژوهشی مهندسی آب و محیط زیست، پژوهشکده حوزه آبی دریای خزر

3 دانشیار گروه مهندسی آب دانشکده علوم کشاورزی دانشگاه گیلان و گروه پژوهشی مهندسی آب و محیط‌زیست، پژوهشکده حوزه آبی دریای خزر

4 عضو هیات علمی بخش تحقیقات فنی و مهندسی کشاورزی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان گیلان،سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت، ایران

چکیده

با توجه به محدودیت منابع آب کشور استفاده بهینه از منابع آب نامتعارف، موردتوجه قرارگرفته است. هدف این پژوهش، بررسی تغییرات رطوبت خاک تحت یک منبع خطی با شوری­های متفاوت آب در یک خاک سنگین لایه­دار است. بدین منظور آبیاری با زمان­های 2، 3 و 4 ساعت برای حجم­های 10، 15 و 20 لیتر و شوری‌های 279/1، 5/2 و 5 دسی­زیمنس بر متر در سه تکرار اعمال شد. به‌منظور بررسی تغییرات رطوبت خاک، مقادیر آن با دستگاه TDR قرائت، و با نرم­افزار SURFER به روش کریجینگ پهنه­بندی شد. متوسط رطوبت حجمی خاک با افزایش حجم آبیاری، افزایش یافت. بیشترین میزان میانگین رطوبت حجمی در تیمار با شوری dSm-1 5 با مقدار 84/39 درصد و کمترین آن در تیمار با شوری dSm-1 279/1 با مقدار 49/37 درصد بود. با توجه به خروجی­های SURFER و متوسط رطوبت حجمی، در تیمار با شوری dSm-1 5 مقدار رطوبت در لایه­های سطحی زیاد بوده که این امر به‌علت کاهش نفوذپذیری و هدایت هیدرولیکی خاک با افزایش شوری بوده است. با توجه به‌قرار گرفتن متوسط رطوبت حجمی خاک در محدوده ظرفیت زراعی خاک­های رس‌سیلتی، می‌توان گفت سامانه آبیاری قطره‌ای نواری در شرایط محدودیت منابع آب باکیفیت مناسب از کارایی لازم برخوردار می­باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Soil Moisture Zoning Changes by Different Irrigation Water Salinity under a Line Source

نویسندگان [English]

  • Firoozeh javadzadeh 1
  • Mohammad Reza Khaledian 2
  • Maryam navabian 3
  • Parisa Shahinrokhsar 4
1 MSc students, Department of Water Engineering, Faculty of Agricultural Sciences, University of Guilan, Iran.
2 Associate Professor, Department of Water Engineering, Faculty of Agricultural Sciences, University of Guilan, Iran and Department of Water Engineering and Environment, Caspian Sea Basin Research Center, Iran
3 Associate Professor, Department of Water Engineering, Faculty of Agricultural Sciences, University of Guilan, Iran and Department of Water Engineering and Environment, Caspian Sea Basin Research Center, Iran.
4 Department of Water Engineering, College of Agriculture, Ferdowsi University of Mashhad and Agricultural Engineering Research Department, Gilan Agricultural and Natural Resources Research and Education Center, AREEO, Rasht, Iran
چکیده [English]

Due to limited water resources utilization of unconventional water resources, is taken into consideration. The aim of this study was to evaluate changes in soil moisture under different irrigation water salinity under a line source in a layered heavy soil. For this purpose, irrigation times period of 2, 3 and 4 hours for volumes of 10, 15 and 20 liters and irrigation water salinity of 1.279, 2.5 and 5 dS/m were applied replicated three times.  In order to evaluate changes in soil moisture values a TDR device was used; and then the SURFER software using kriging method was used for zoning. The average soil moisture content was increased by increasing the water volume. The highest average volumetric moisture was in 5 dS/m treatment with 39.84% and the lowest one was in 1.279 dS/m treatment with 37.49%. According to SURFER outputs and the average volumetric moisture, in 5 dS/m salinity treatment the soil moisture in the surface layers was high, which is due to reduced permeability and hydraulic conductivity because of soil salinity increase. As the average soil moisture content is about at the field capacity of the silty clay soil, it can be said that drip irrigation system under limited water resources with a relevant quality has the necessary performance.
 

کلیدواژه‌ها [English]

  • Soil moisture variations
  • Tape drip irrigation
  • TDR
احمدپور، ح. 1391. پهنه­بندی شوری آب­های زیرزمینی استان گیلان و پیش­بینی وضعیت آینده با استفاده از یک مدل مبتنی بر GIS، پایان­نامه کارشناسی­ارشد دانشگاه گیلان. 96 صفحه.
اصغری، ش.، ضیاالدینی، ا. و عباسی، ف. 1392. تأثیر لجن پتروشیمی تبریز بر جریان ترجیحی و پارامترهای انتقال بروماید در یک خاک لوم آهکی. مجله پژوهش­های خاک. جلد 27. شماره 1. صفحات: 69-59.
پذیرا، ا. 1391. حفاظت از منابع فیزیکی تولید در کشاورزی «خاک و آب»، انتشارات کمیته ملی آبیاری و زهکشی، 268 صفحه.
ختار، م.، مصدقی، م. و محبوبی، ع. ا. 1391. اثر کیفیت آب آبیاری بر مقدار آب قابل‌استفاده برای گیاه و توزیع اندازه منافذ دو خاک آهکی با بافت متفاوت. مجله علوم آب و خاک. سال 16. شماره 60. صفحات 172-159.
سیاری، ن.، قهرمان، ب. و داوری، ک. 1386. بررسی توزیع رطوبت خاک تحت سیستم آبیاری قطره­ای زیرسطحی (SDI) در باغ‌های پسته (مطالعه موردی: اراضی رفسنجان با آب­های شور). مجله پژوهش در کشاورزی، سال 7، شماره 3، صفحات: 65- 75.
شعبان‌پور شهرستانی، م. 1380. مقایسه سه مدل انتقال املاح با استفاده از ردیاب برماید. مجله علوم آب‌وخاک. جلد 15. شماره 2. صفحات: 272-261.
علیزاده، ا. و خیابانی، ح. 1369. آبیاری قطره­ای. انتشارات معاونت فرهنگی آستان قدس رضوی. 275 صفحه.
مزیدی، م.، معروف‌پور، ع. و بهرام‌نژاد، ب. 1388. بررسی دقت مدل‌های انعکاس‌سنجی حوزه زمانی برای برآورد رطوبت خاک. مجله پژوهش آب ایران. سال سوم. شماره 5. صفحات: 52- 41.
Albayrak M., E. Gunes and B. Gulcubuk. 2010. The effects of irrigation methods on input use and productivities of sugar beet in central Anatolia. Turkey. Afric. Jour. Agric. Res., 5: 188-195.
Erickson, J.R. 1986. Using high salinity waters in the southwest. Proc. 1980. Specialty conference on irrigation and drainage, todays challenges. 23-25 July, Boise, Idaho. ASCE, New York. 198-204.
Huat Bujang, B.K., H.J. Faisal and T.H. Low. 2006. Water infiltration characteristics of unsaturated soil slope and its effect on suction and stability. Geotech. Geological Eng., 24: 1293-1306.
Khan, A.A., M. Yitayew and A.W. Warrick. 1996. Field evalution of water and solute distribution from a point source. Journal of Irrigation and Drainage Engineering, 122(4): 221-227.
Liu, M.X., J.S. Yang, X.M. Li, M.Yu and J. Wang. 2012. Effects of irrigation water quality and drip tape arrangement on soil salinity, soil moisture Distribution and cotton yield (Gossypium hirsutum L.) under mulched drip irrigation in Xinjiang, China. Journal of Integrative Agriculture, 11(3): 502-511.
Maroufpoor, E., S. Emamgholizadeh, H. Torabi and M. Behzadinasab. 2009. Impact of soil texture on the calibration of TDR for water content measurment. Applied Science Journal, 9(16): 2933-2940.
Mmolava, Kh. and D. Or. 2000. Root zone solute dynamics under drip irrigation: A review. Plant and Soil, 222: 163-190.
Mori, Y. and N. Higashi. 2009. Controlling solute transport processes in soils by using dual-porosity characteristics of natural soils. Soil Science Society of America Journal, 62: 1418-1427.
Oleszczuk, R., T. Brandyk, T. Gnatowski, and J. Szatylowicz. 2004. Calibration of TDR for moisture determination in peat deposits. International Agrophysics, 18: 145-151.
Pereira, L.S., I. Cordey, and I. Iacovides. 2009. Coping with Water Scarcity: Addressing the Challenges. Springer. pp. 382.
Rajput, T.B.S. and P. Neelam. 2006. Water and nitrate  movement in drip-irrigation onion under fertigation and irrigation treatments. Agricultural Water Management, 79: 293-311.
Roberts, T. L., S. A. White, A. W. Warrick, and T. L. Thompson. 2008. Tape depth and germination method influence patterns of salt accumulation with subsurface drip irrigation. Agricultural Water Management, 95: 669–677.
Siyal, A.A. and T.H. Skaggs. 2009. Measured and simulated soil wetting patterns under porous clay pipe sub-surface irrigation. Agricultural Water Management, 96: 669–677.
Thorburn, P.J., F.J. Cook and K.L. Bristow. 2003. Soil–dependent wetting from trickle emitters: implication for system design and management. Irrigation Science, 22: 121-127.