عامل ناپیوستگی در نفوذ از جویچه تحت جریان ناپیوسته

نویسندگان

1 دانشیار پژوهشی مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی آذربایجان شرقی، سازمان تحقیقات، آموزش و ترویج کشاورزی، تبریز، ایران.

2 مربی پژوهشی مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی آذربایجان شرقی، سازمان تحقیقات، آموزش و ترویج کشاورزی، تبریز، ایران.

3 دانشیار موسسه تحقیقات فنی و مهندسی کشاورزی، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

چکیده

یکی از روش‏های افزایش راندمان کاربرد آب در اراضی فاریاب، استفاده از جریان ناپیوسته است. شبیه‏سازی و طراحی صحیح این روش آبیاری، نیازمند برآورد دقیق ضرایب معادلات نفوذ است. تعدد اندازه‏گیری‏های مزرعه‏ای و صرف زمان نسبتاً زیاد برای برآورد نفوذ در نقاط موردنظر از طول جویچه، از مطلوبیت روش مرسوم در برآورد ضرایب معادله نفوذ در جریان ناپیوسته می‏کاهد. بنابراین، به‌منظور ارزیابی عامل ناپیوستگی در نفوذ از جویچه تحت جریان ناپیوسته در نوبت‏های مختلف آبیاری و معرفی نحوه کاربرد روش جویچه مسدود برای اندازه‏گیری نفوذ از جوچه تحت جریان ناپیوسته آزمایشی با کاربرد جریان ناپیوسته با زمان وصل 30 دقیقه و نسبت سیکل یک‌دوم با چهار بار جریان ناپیوسته، در دو نوبت آبیاری اول و دوم و در سه تکرار انجام‌شده است. برای انجام آزمایش‌های نفوذپذیری، از روش جویچه‏های مسدود سازگار یافته با جریان ناپیوسته استفاده شد. کاربرد جریان ناپیوسته دارای توانائی و پتانسیل کاهش در نفوذ تجمعی با اعمال موج‌های مختلف دارد. کاهش نفوذ در اثر کاربرد آبیاری ناپیوسته، درنهایت موجب کاهش نفوذ عمقی و بهبود وضعیت پیشروی جریان در جویچه شده و درنتیجه، موجب افزایش راندمان آبیاری و یکنواختی توزیع آب خواهد شد. با افزایش نوبت آبیاری، مقدار نفوذ تجمعی کاهش می‏یابد. نفوذ تجمعی در انتهای زمان وصل 30 دقیقه اول برای نوبت اول آبیاری (با مقدار 9363 میلی‌لیتر بر متر) بیشتر از نوبت بعدی (با مقدار 5858 میلی‌لیتر بر متر) بود. تفاوت سرعت نفوذ در موج‏های دوم تا چهارم معنی‏دار نبود. کاربرد جریان با بیشتر از سه موج، موجب تغییر در سرعت نفوذ و بهبود کارآئی آبیاری نشد. پارامترهای معادله نفوذ کوستیاکف (k و a) در موج‌های مختلف از آبیاری اول و دوم با تحلیل رگرسیون به دست آمد. توان معادله برابر43/0 بود. مقادیر پارامتر k در آبیاری اول، بیشتر از مقادیر آن در آبیاری دوم بود. عامل ناپیوستگی برای موج‏های مختلف از آبیاری‏های اول و دوم ارزیابی گردید. از عامل‏های ناپیوستگی می‏توان برای پیش‏بینی نفوذ تجمعی در موج‏های آبیاری اول و دوم بر مبنای نفوذ تجمعی موج اول استفاده نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Surge Factor in Furrow Infiltration under Non- Continuous Flow

نویسندگان [English]

  • Abolfazl Nasseri 1
  • davood Niknezhad 2
  • Alireza Hassanoghli 3
1 Agricultural Engineering Research Department, East Azarbaijan Agricultural and Natural Resources Research and Education Center, AREEO, Tabriz, Iran.
2 Watershed Mangement Department, East Azarbaijan Agricultural and Natural Resources Research and Education Center, AREEO, Tabriz, Iran
3 Associate Professor of Agricaltural Engineering Research Institute, Agricaltural Research, Education and Extension Organization, Karaj, Iran.
چکیده [English]

One of the methods to increase water application efficiency in agricultural lands is surge irrigation. Simulation and design of this method rely on accurate estimation of infiltration equation coefficients. Commonly used methods to estimate infiltration equations coefficients need to numerous field measurements and to time consume. Therefore, to evaluate surge factor in furrow infiltration under non- continuous flow, a field study was conducted for surge flow with on-time of 30 min, cycle ratio of 1/2, with four surges, at two irrigation events. Surge infiltration was measured by blocked furrow infiltrometers which adapted for non- continuous condition. The results indicated that non- continuous flow has a potential to decrease cumulative infiltration with the application of different surges. Decreasing infiltration due to non-continuous flow caused decreasing deep percolation and improving flow advance along furrows, consequently, it will be caused increase in irrigation efficiency and improve water distribution in the farm. With increase in irrigation events, cumulative infiltration decreased. Cumulative infiltration at the first 30 min in the first irrigation (with 9363 ml m-1) is more than the second event (with 5858 ml m-1). The differences between infiltration rates from two to four surges were not significant. Application flow with more than three surges did not cause changes in infiltration rate and water efficiency. Infiltration equation parameters (k and a) were obtained by regression analysis for different surges of tow irrigation events. The exponent of the equation was 0.43. The parameter of K in The first irrigation was more than that was from the second irrigation. In the present study, surge factor was evaluated for two irrigation events with several flow surges. The surges factors can be used to estimate cumulative infiltration in the different surges of the first and the second irrigation events based on the first surge.

کلیدواژه‌ها [English]

  • Surge irrigation
  • Cumulative infiltration
  • Blocked furrow
  • Furrow irrigation
Booher, L.J. 1981. Surface Irrigation, Agricultural Development Paper No. 95, 1974 FAO, Rome. 70. FAO, Map of Fuelwood Situation in Developing Countries, FAO, Rome, 71.

Coolidge, P.S., Walker, W.R., and Bishop, A.A. 1982. Advance and runoff under surge flow furrow irrigation. Journal of the Irrigation and Drainage Division, 108(1):35-41.

Gardner, W.H. 1976. Water content. In Methods of Soil Analysis. Part: Physical and Mineralogical Properties. 4th Ed., ed C.A., Black, D.D., Evans, L.E., Ensminger, J.L., White, F.E., Clark, and R.C., Dinauer. 82-127. Madison, WI. Agronomy Society.

Izadi, B., and Heermann, D.F. 1987. Real time estimation of infiltration parameters for controlling an irrigation. American Society of Agricultural Engineers (USA).

Izuno, F.T., Podmore T.H., and Duke, H.R. 1985. Infiltration under surge irrigation. Trans. ASAE, 28(2):517-521.

Killen, M.A., and Slack, D.C. 1987. Green-ampt-model to predict surge irrigation phenomena. Journal of irrigation and drainage engineering, 113(4):575-584.

Mahmood, S., and Latif, M. 2003. Surge-ring infiltrometer and its application to simulate infiltration. Irrigation and Drainage Systems, 17(4):367-379

Mostafazadeh, B., and Mousavi, F. 1997. Surface irrigation: Theory and application. Frahang Jaame, Tehran, Iran.

Mousavi, F., and Mostafazadeh, B. 1992. Investigate furrow infiltration under surge and continuous irrigations. Journal of Science and Industrials of Agriculture, 6(2):94-108.

Samani, Z.A. 1983. Infiltration under surge flow irrigation. Ph.D. diss., Agricultural and Irrigation Engineering Dept., Utah State Univ., Logan.

Shaya, W.H., Bralts, V.F., and Segerlind, L.J. 1993. Kinematics-wave furrow irrigation analysis: A finite element approach. Transactions of the ASAE, 36(6):1733-1742.

Sohrabi, R. 1993. Increasing Water application efficiency with surge irrigation. Report 11. Iranian Agricultural engineering institute. AREO, Iran.

 Sohrabi, T., Heydari, N., Tavakkoli, A.R., and Neyrizi, S. 1996. Surge irrigation. Iranian National Committee on Irrigation and Drainage.

Stringham, G.E., and Keller, J. 1979. Surge flow for automatic irrigation. In Irrigation and Drainage: (pp. 132-142). ASCE.

 Walker, W.R., and Busman, J.D. 1990. Real-time estimation of furrow infiltration. Journal of irrigation and drainage engineering, 116(3):299-318.

Walker, W.R., and Humphery, A.S. 1983. Kinematic wave furrow irrigation model. Journal of the Irrigation and Drainage Division, 109(4):1-25.

Westesen, G.L., and Biglen, D.K. 1986. Surge flow border irrigation trials. American Society of Agricultural Engineers. Microfiche collection (USA).