کاربرد اینترنت اشیا در آبیاری هوشمند

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی آبیاری و زهکشی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران

2 دانشیار گروه مهندسی آبیاری و آبادانی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران

3 دانشجوی کارشناسی ارشد مهندسی کامپیوتر، دانشکده مهندسی کامپیوتر، دانشگاه صنعتی شریف

چکیده

کمبود آب و کاهش آن، یکی از بزرگ‌ترین مشکلات کنونی بشر است. این مسئله در کشورهایی که در مناطق گرم و خشک قرار دارند بیشتر قابل‌لمس و درک می‌باشد. در هر روش آبیاری چه نوین و چه سنتی، زمان آبیاری مزارع از اهمیت ویژه‌ای برخوردار است. بسیاری از گیاهان زراعی به دلیل کم آبیاری یا بیش‌آبیاری به‌اندازه مطلوب رشد نکرده و عملکردشان کاهش پیدا می‌کند. دلیل عمده این مشکل کاهش رطوبت خاک و نرسیدن آب به‌موقع به محصول است. یکی از قدم‌های مؤثر جهت مقابله با این مسئله، مصرف به‌موقع و به‌اندازه آب است. یکی از روش‌هایی که در افزایش راندمان مصرف آب در بخش آبیاری اهمیت دارد استفاده از سیستم‌های هوشمند آبیاری در مزرعه است که به‌طور دقیق رطوبت خاک مزارع و وضعیت آب‌وهوا را تعیین می‌کند. سامانه‌های مدیریت آبیاری هوشمند مبتنی بر اینترنت اشیا می‌توانند در دستیابی به مصرف بهینه آب و کشاورزی دقیق کمک کنند. در این مقاله سامانه آبیاری هوشمند معرفی‌شده و نقش فناوری‌های نوین (اینترنت اشیا) در آن بررسی می­شود.

کلیدواژه‌ها


عنوان مقاله [English]

Application of the Internet of Things in Smart Irrigation

نویسندگان [English]

  • Zainab Sojoodi 1
  • farhad Mirzaei 2
  • hossein Sojoodi 3
1 Master's degree in Irrigation and Drainage Engineering, College of Agriculture and Natural Resources, University of Tehran.
2 Associate Professor of Irrigation and Water Engineering, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran
3 Master's degree in Computer Engineering, Department of Computer Engineering, Sharif University of Technology
چکیده [English]

Lack of water and its reduction is one of the biggest problems facing humankind. This problem is more perceptible in countries that are hot and dry. In both modern and traditional irrigation methods, the irrigation time of the fields is of particular importance. Many crops have not grown to the optimum size due to irrigation or watering, and their efficiency decreases. The main reason for this problem is to reduce the moisture content of the soil and not to deliver timely water to the product. One of the most effective steps to tackle this problem is timely and as much water consumption. One of the ways to increase water use efficiency in agriculture is to use smart field irrigation systems that accurately determine the soil moisture and weather conditions. smart Irrigation Management Systems Internet-based things can help in achieving optimal water and farming consumption. In this article, the system of smart irrigation is introduced and the role of new technologies (Internet of Things) is examined.

کلیدواژه‌ها [English]

  • Agriculture
  • Internet of things
  • Smart irrigation
  • Water reduction
Agrawal, Sarita, and Manik Lal Das. "Internet of Things—A paradigm shift of future Internet applications." In Engineering (NUiCONE), 2011 Nirma University International Conference on, pp.1-7. IEEE, 2011.
Baudoin, W., Nono-Womdim, R., Lutaladio, N., Hodder, A., Castilla, N., Leonardi, C., De Pascale, S., Qaryouti, M., 2013. Good Agricultural Practices for Greenhouse Vegetable Crops: Principles for Mediterranean Climate Areas (No. 217). Food and Agriculture Organization of The United Nations, Rome.
Chen, Xian-Yi, and Zhi-Gang Jin. "Research on key technology and applications for internet of things." Physics Procedia 33, pp. 561-566, 2011.
Chalabi, Z. S., Bailey, B. J. and Wilkinson, D. J. 1996. A Real-Time Optimal Algorithm for Greenhouse heating. Computers and Electronics in Agriculture. Vol. 15, 1-13.
FAO, 2016. Available online: http://www.fao.org/home/en/ (accessed on 8 July 2016).
Aayog, N.G. 2016. Raising Agricultural Productivity and Making Farming Remunerative for Farmers.,
Gutiérrez, J., Villa-medina, J.F., Nieto-Garibay, A., Porta-gándara, M.Á., Gutierrez, J., Villa-medina, J.F., Nieto-Garibay, A., Porta-Gandara, M.A., 2014. Automated irrigation system using a wireless sensor network and GPRS module. IEEE Trans. Instrum. Meas. 63, 166–176.
Hoon Jae, S., Kyung Man, K. Kwang Hyun, K. and Weon Sik, H. 1995. A study on the automatic measurement and control system for greenhouse environment. RDA J. Agri. Sci. 37(2), 681-686.
Jaguey, J.G., Villa-Medina, J.F., Lopez-Guzman, A., Porta-Gandara, M.A., 2015. Smartphone irrigation sensor. IEEE Sens. J. 15, 5122–5127.
Kodali, R. K., Jain, V., & Karagwal, S. (2016, December). IoT based smart greenhouse. In 2016 IEEE Region 10 Humanitarian Technology Conference (R10-HTC) (pp. 1-6). IEEE.
‏Lipov, A. Yu. 1992. Intellectual real time control system for technological process in the greenhouse. Traktory-i-Sel'skokhozyaistvennye-Mashiny: Russia, No. 10-12, 12-16.
Li, L., Xiaoguang, H., Ke, C., & Ketai, H. (2011, June). The applications of wifi-based wireless sensor network in internet of things and smart grid. In 2011 6th IEEE Conference on Industrial Electronics and Applications (pp. 789-793). IEEE.‏ Conference on, pp. 789-793. IEEE, 2011.
Levidow, L., Zaccaria, D., Maia, R., Vivas, E., Todorovic, M., Scardigno, A., 2014. Improving water-efficient irrigation: prospects and difficulties of innovative practices. Agric. Water Manage. 146, 84–94.
Leinonen, I. and H. G. Jones. (2004). Combining thermal and visible imagery for estimating canopy temperature and identifying plant stress. Journal of Experimental Botany 55(401): 1423–1431.
 
 Morais, R., Valente, A., & Serôdio, C. (2005, July). A wireless sensor network for smart irrigation and environmental monitoring: A position article. In 5th European federation for information technology in agriculture, food and environement and 3rd world congress on computers in agriculture and natural resources (EFITA/WCCA) (pp. 845-850).‏
Nikolidakis, Stefanos A., et al. "Energy efficient automated control of irrigation in agriculture by using wireless sensor networks." Computers and Electronics in Agriculture 113 (2015): 154-163.‏
O’Shaughnessy, S.A., Evett, S.R., 2010. Canopy temperature based system effectively schedules and controls center pivot irrigation of cotton. Agric. Water Manage. 97, 1310–1316.
Pardossi, A., Incrocci, L., Incrocci, G., Malorgio, F., Battista, P., Bacci, L., ... & Balendonck, J. (2009). Root zone sensors for irrigation management in intensive agriculture. Sensors, 9(4), 2809-2835
Playán, E., Mateos, L., 2006. Modernization and optimization of irrigation systems to increase water productivity. Agric. Water Manag. 80, 100–116.
Roopaei, M., Rad, P., Choo, K.R., Choo, R., 2017. Cloud of things in smart agriculture: intelligent irrigation monitoring by thermal imaging. IEEE Cloud Comput. 4, 10–15.
Rajalakshmi, P., and S. Devi Mahalakshmi. "IOT based crop-field monitoring and irrigation automation." 2016 10th International Conference on Intelligent Systems and Control (ISCO). IEEE, 2016.‏
Sun, X. B. 1992. A study on the greenhouse environmental parameter classify control system by microcomputer. Trans. Chinese Soc. Agri. Eng., 8 (1), 72-77.
Sharma, D., Shukla, A.K., Bhondekar, A.P., Ghanshyam, C., Ojha, A., 2016. A technical assessment of IOT for Indian agriculture sector. In: IJCA Proc. Natl. Symp. Mod. Inf. Commun. Technol Digit.
Salehi, A.; Jimenez-Berni, J.; Deery, D.M.; Palmer, D.; Holland, E.; Rozas-Larraondo, P.; Chapman, S.C.; Georgakopoulos, D.; Furbank, R.T. SensorDB: A virtual laboratory for the integration, visualization and analysis of varied biological sensor data. Plant Methods 2015, 11, 53.
Stanghellini, C., 2014. Horticultural production in greenhouses: efficient use of water. Acta Hortic. 1034, 25–32
Shahzadi, R., Tausif.M., Ferzund.J AND Asif Suryani.M. "Internet of Things based Expert System for Smart Agriculture." IJACSA International Journal of Advanced Computer Science and Applications 7.9 (2016): 341-350
Zhao, Ji-chun, Jun-feng Zhang, Yu Feng, and Jian-xin Guo. "The study and application of the IOT technology in agriculture." In Computer Science and Information Technology ICCSIT, 2010 3rd IEEE International Conference on, vol. 2, pp. 462-465. IEEE, 2010.