Evaluation of different vegetation discriminator indices and image processing algorithms to estimate water productivity

Document Type : Original Article

Authors

1 Department of Water Science and Engineering, Faculty of Agriculture and Natural Resources, Imam ‎Khomeini International University, Qazvin, Iran

2 Remote Sensing Research Center Sharif University of Technology Tehran, Iran

Abstract

A canopy cover percentage is considered one of the most important evaluation criteria for evaluating the ‎simultaneous effects of impressive factors on water efficiency. Since digital cameras are developed and ‎widely available, the use of discrimination indices in the visible spectrum is making it possible to calculate ‎the leaf area index and chlorophyll content of vegetation covers. Therefore, in this study, the ‎performance of five plant Vegetation Discrimination Indices (VIDs) and a variety of thresholding ‎algorithms was compared in order to distinguish the sugar beet's vegetation cover from its background, ‎among which two new indices were introduced. In comparison with the old VID of Excess Green minus ‎excess Red (ExGR), using the new VID of Excess Green minus excess Blue (ExGB) and Riddler-Calvard's ‎thresholding algorithm resulted in a 29.54 percent increase in vegetation cover segmentation accuracy. ‎Following this step, we determined which function would best predictdry beet weight from vegetation ‎cover percentage, and the power function did the best. In order to estimate the yield, the segmentation ‎method based on Riddler-Calvard thresholding and the New Canopy Index of Vegetation Extraction ‎‎(CIVEn) had an error of 12.09 Kg. With an error of 41.25 Kg, the segmentation method based on Otsu ‎thresholding and ExGR index performed worst.‎

Keywords


علیزاده، ا. 1394. طراحی سیستم‌های آبیاری (جلد اول)، چاپ ششم، دانشگاه امام رضا (ع).
علیزاده، ا. 1393. رابطه آب و خاک و گیاه، ویرایش چهارم، چاپ چهاردهم، دانشگاه صنعتی سجاد.
لطیف‌التجار، س.، جعفری، ع.، نصیری، س. م. و شریفی، ح. 1393. تخمین عملکرد چغندرقند براساس پوشش سایه‌انداز گیاه با استفاده از الگوهای پردازش تصویر. نشریه ماشین‌های کشاورزی. 2 (4): 284-275.
حدادی, سیدرضا, سلطانی, مسعود, & هاشمی, معصومه‌. (1401). مقایسه صحت روش‌های مختلف پردازش تصویر در برآورد پوشش سایه‌انداز گیاه چغندرقند با استفاده از تصاویر دوربین دیجیتال. مدیریت آب و آبیاری, 12(2), 295-308. doi: 10.22059/jwim.2022.336225.954
Coy, A., Rankine, D., Taylor, M., Nielsen, D. C. and Cohen, J. 2016. Increasing the accuracy and automation of fractional vegetation cover estimation from digital photographs. Remote Sensing. 8(7): 21–25.
https://doi.org/10.3390/rs8070474
García-Martínez, H., Flores-Magdaleno, H., Ascencio-Hernández, R., Khalil-Gardezi, A., Tijerina-Chávez, L., Mancilla-Villa, O. R. and Vázquez-Peña, M. A. 2020. Corn grain yield estimation from vegetation indices, canopy cover, plant density, and a neural network using multispectral and RGB images acquired with unmanned aerial vehicles. Agriculture (Switzerland). 10(7): 1–24.
https://doi.org/10.3390/agriculture10070277
Hamuda, E., Glavin, M. and Jones, E. 2016. A survey of image processing techniques for plant extraction and segmentation in the field. Computers and Electronics in Agriculture. 125: 184–199. https://doi.org/10.1016/j.compag.2016.04.024
He, H. J., Zheng, C. and Sun, D. W. 2016. Image segmentation techniques. In Computer Vision Technology for Food Quality Evaluation: Second Edition. Elsevier Inc. https://doi.org/10.1016/B978-0-12-802232-0.00002-5
Kataoka, T., Kaneko, T., Okamoto, H. and Hata, S. 2003. Crop growth estimation system using machine vision. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, 2(Aim): 1079–1083. https://doi.org/10.1109/AIM.2003.1225492
Kazmi, W., Garcia-Ruiz, F. J., Nielsen, J., Rasmussen, J., and Jørgen Andersen, H. 2015. Detecting creeping thistle in sugar beet fields using vegetation indices. Computers and Electronics in Agriculture. 112: 10–19. https://doi.org/10.1016/j.compag.2015.01.008
Khanna, R., Schmid, L., Walter, A., Nieto, J., Siegwart, R., and Liebisch, F. 2019. A spatio temporal spectral framework for plant stress phenotyping. Plant Methods. 15(1): 1–18. https://doi.org/10.1186/s13007-019-0398-8
Kim, S.-H., Ryu, C.-S., Kang, Y.-S., and Min, Y.-B. 2015. Improved plant image segmentation method using vegetation indices and automatic thresholds. Journal of Agriculture & Life Science. 49(5): 333–341.                                     https://doi.org/10.14397/jals.2015.49.5.333
Lee, K.-J., and Lee, B.-W. 2011. Estimating canopy cover from color digital camera image of rice field. Journal of Crop Science and Biotechnology. 14(2): 151–155.                          https://doi.org/10.1007/s12892-011-0029-z
Meyer, G. E., Mehta, T., Kocher, M. F., Mortensen, D. A. and Samal, A. 1998. Textural imaging and discriminant analysis for distinguishing weeds for spot spraying. Transactions of the American Society of Agricultural Engineers. 41(4): 1189–1197. https://doi.org/10.13031/2013.17244
Meyer, George E. and Neto, J. C. 2008. Verification of color vegetation indices for automated crop imaging applications. Computers and Electronics in Agriculture. 63(2): 282–293.                          https://doi.org/10.1016/j.compag.2008.03.009
Otsu, N. 1979. A Threshold Selection Method from Gray-Level Histograms. IEEE Transaction on Systems, Man and Cybernetics. 20(1): 62–66.
Parker, J. R. 2011. Algorithms for image prcessing and computer vision. In Journal of Chemical Information and Modeling. 53(9).
Riehle, D., Reiser, D., and Griepentrog, H. W. 2020. Robust index-based semantic plant/background segmentation for RGB- images. Computers and Electronics in Agriculture. 169(December 2019): 105201.         https://doi.org/10.1016/j.compag.2019.105201
Sahoo, P. K., Soltani, S. and Wong, A. K. C. 1988. A survey of thresholding techniques. Computer Vision, Graphics and Image Processing. 41(2): 233–260. https://doi.org/10.1016/0734-189X(88)90022-9
Sánchez-Sastre, L. F., Alte da Veiga, N. M. S., Ruiz-Potosme, N. M., Carrión-Prieto, P., Marcos-Robles, J. L., Navas-Gracia, L. M. and Martín-Ramos, P. 2020. Assessment of RGB vegetation indices to estimate Chlorophyll content in sugar beet leaves in the final cultivation stage. AgriEngineering. 2(1): 128–149.                         https://doi.org/10.3390/agriengineering2010009
Thailambal, G. and Yogeshwari, M. 2020. Automatic segmentation of plant leaf disease using improved fast Fuzzy C-Means clustering and adaptive Otsu thresholding. European Journal of Molecular and Clinical Medicine. 7(3): 5447–5462.                                                https://ejmcm.com/article_5513.html
Woebbecke, D. M., Meyer, G. E., Von Bargen, K., and Mortensen, D. A. 1995. Color indices for weed identification under various soil, residue, and lighting conditions. Transactions of the American Society of Agricultural Engineers. 38(1): 259–269.                                                  https://doi.org/10.13031/2013.27838
Zheng, L., Zhang, J., and Wang, Q. 2009. Mean-shift-based color segmentation of images containing green vegetation. Computers and Electronics in Agriculture. 65(1): 93–98.             https://doi.org/10.1016/j.compag.2008.08.002.